一条线平行于一个面可以推出什么

文/笠蓑湿
专题:

如果平面外一条直线和平面内的一条直线平行,那这么直线就和平面平行。简言之:线线平行,则线面平行。同时,要证明线面平行,就得在平面内找一条线,使得线线平行。

线面平行的判定定理

定理1

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

已知:a∥b,a⊄α,b⊂α,求证:a∥α

反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α

∵a∥b,∴A不在b上

在α内过A作c∥b,则a∩c=A

又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。

∴假设不成立,a∥α

向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵b⊂α

∴b⊥p,即p·b=0

∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb

那么p·a=p·kb=kp·b=0

即a⊥p

∴a∥α

定理2

平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行 [2] 。

已知:a⊥b,b⊥α,且a不在α上。求证:a∥α

证明:设a与b的垂足为A,b与α的垂足为B。

假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC

∵B∈α,C∈α,b⊥α

∴b⊥BC,即∠ABC=90°

∵a⊥b,即∠BAC=90°

∴在△ABC中,有两个内角为90°,这是不可能的事情。

∴假设不成立,a∥α

小编推荐

一键复制全文保存为WORD