二次函数的性质和定义

文/流浪汉
专题:

一、二次函数的性质和定义

1、二次函数

一般地,形如$y=ax^2+bx+c$($a$,$b$,$c$是常数,$a≠0$)的函数,叫做二次函数。其中,$x$是自变量,$a$,$b$,$c$分别是函数解析式的二次项系数、一次项系数和常数项。

注意:① 二次函数中自变量的最高次数必须是2,也就是说在$y=ax^2+bx+c$中,$a≠0$,而$b$,$c$可以为0。② 含自变量的代数式是整式,而不是分式或根式。

2、二次函数$y=ax^2+bx+c$的图象与性质

二次函数$y=ax^2+bx+c$($a$,$b$,$c$是常数,$a≠0$)

(1)当$a>0$时

图象开口向上;对称轴为$x=-\frac{b}{2a}$;顶点坐标为$\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$;当$x<-\frac{b}{2a}$时,$y$随$x$的增大而减小;当$x>-\frac{b}{2a}$时,$y$随$x$的增大而增大;当$x=-\frac{b}{2a}$时,$y$有最小值,此时$y_{最小值}=\frac{4ac-b^2}{4a}$。

(2)当$a<0$时

图象开口向下;对称轴为$x=-\frac{b}{2a}$;顶点坐标为$\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$;当$x<-\frac{b}{2a}$时,$y$随$x$的增大而增大;当$x>-\frac{b}{2a}$时,$y$随$x$的增大而减小;当$x=-\frac{b}{2a}$时,$y$有最大值,此时$y_{最大值}=\frac{4ac-b^2}{4a}$。

因为抛物线$y=ax^2+bx+c$($a$,$b$,$c$是常数,$a≠0$)的对称轴为直线$x=-\frac{b}{2a}$,当对称轴在$y$轴左侧时,$-\frac{b}{2a}<0$,即$\frac{b}{2a}>0$,所以$a$与$b$同号;反之,$a$与$b$异号,故可记为“左边同号,右边异号($a$与$b$)”。

3、二次函数$y=a(x-h)^2+k(a≠0)$的图象与性质

二次函数$y=a(x-h)^2+k(a≠0)$

(1)开口

当$a>0$时,开口向上,并向上无限延伸。

当$a<0$时,开口向下,并向下无限延伸。

$|a|$越大,开口越小;$|a|$越小,开口越大。

(2)对称轴及顶点坐标

关于直线$x=h$对称;顶点坐标为$(h,k)$。

(3)增减性

当$a>0$时,$x<h$时,即在对称轴的左侧,$y$随$x$的增大而减小;$x>h$时,即在对称轴的右侧,$y$随$x$的增大而增大。

当$a<0$时,$x<h$时,即在对称轴的左侧,$y$随$x$的增大而增大;$x>h$时,即在对称轴的右侧,$y$随$x$的增大而减小。

(4)最值

$a>0$时,二次函数有最小值,即当$x=h$时,$y_{最小值}=k$,此时最低点为顶点$(h,k)$;

$a<0$时,二次函数有最大值,即当$x=h$时,$y_{最大值}=k$, 此时最高点为顶点$(h,k)$。

二、二次函数的性质的相关例题

若抛物线$y=x^2-2x+c$与$y$轴的交点坐标为$(0,-3)$,则下列说法不正确的是___

A.抛物线的开口向上

B.抛物线的对称轴是直线$x=1$

C.当$x=1$时,$y$的最大值为$-4$

D.抛物线与$x$轴的交点坐标为$(-1,0)$,$(3,0)$

答案:C

解析:抛物线$y=x^2-2x+c$与$y$轴的交点坐标为$(0,-3)$,∴$c=-3$。即$y=x^2-2x-3=$$(x-1)^2-$$4=$$(x-3)$$(x+1)$。∴其开口向上,对称轴为直线$x=1$,当$x=1$时,$y$的最小值为$-4$,抛物线与$x$轴的交点坐标为$(-1,0)$,$(3,0)$。故选C。

小编推荐

一键复制全文保存为WORD