高中数学导数的基本公式

文/酒自斟
专题:

导数知识点

友情提醒:由于新高三站宽度限制,上传文本可能存在页面排版较乱的情况,如果点击下载或全屏查看效果更佳。查看本科目或其他科目更多知识点

知识点总结

  函数的平均变化率、函数的瞬时变化率、导数的概念、求导函数的一般步骤、导数的几何意义、利用定义求导数、导数的加(减)法法则、导数的乘法法则、导数的除法法则、简单复合函数的导数等知识点。其中理解导数的定义是关键,同时也要熟记常见的八种函数的导数及导数的运算法则。

常见考法

  在阶段考中,以选择题、填空题和解答题的形式考查求导的知识,在高考中,主要是融合在函数解答题中联合考查求导的知识。一般求导容易解答。直接利用求导的运算法则和复合函数的求导方法解答。

  (一)导数第一定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义

  (二)导数第二定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义

  (三)导函数与导数

  如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

  (四)单调性及其应用

  1.利用导数研究多项式函数单调性的一般步骤

  (1)求f¢(x)

  (2)确定f¢(x)在(a,b)内符号 (3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2.用导数求多项式函数单调区间的一般步骤

  (1)求f¢(x)

  (2)f¢(x)>0的解集与定义域的交集的对应区间为增区间; f¢(x)<0的解集与定义域的交集的对应区间为减区间

3.导数

小编推荐

一键复制全文保存为WORD