平面的法向量

文/游离者
专题:

平面的法向量确定平面位置的重要向量,指与平面垂直的非零向量,一个平面的法向量可有无限多个,但单位法向量有且仅有两个。例如在空间直角坐标系中平面Ax+By+Cz+D=0的法向量为n=(A,B,C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。

法向量简介

法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

定义:

三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面的向量。

法线是与多边形的曲面垂直的理论线,一个平面存在无限个法向量。在电脑图学的领域里,法线决定着曲面与光源的浓淡处理,对于每个点光源位置,其亮度取决于曲面法线的方向。

如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。

计算:

对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。

用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。

如果S是曲线坐标x(s,t)表示的曲面,其中st是实数变量,那么用偏导数叉积表示的法线为。

如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为。

如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。

小编推荐

一键复制全文保存为WORD

猜你喜欢

高中数学提分最快的方法是什么 有哪些窍门

21-07-27

高中数学考试答题技巧 有哪些技巧

21-07-26

怎么提高高中数学成绩 快速提高成绩的方法

21-07-26

高三数学怎么提高 提升数学成绩的方法有哪些

21-07-26

高三数学提分最快的方法 数学科目学习技巧有哪些

21-07-23

高中数学听不懂怎么办 数学有什么学习技巧

21-07-20

高中数学应该怎么学 学习方法有哪些

21-07-20

两个矩阵相乘等于0说明什么

21-07-15