正定矩阵一定是实对称矩阵吗 有什么关系

文/孤旅人
专题:

实对称矩阵是“母”概念。正定矩阵是“子”概念。正定矩阵是实对称矩阵的一种。实对称矩阵还包括负定、半正定、半负定矩阵。

正定矩阵都是对称矩阵吗

不一定是对称的。

正定矩阵在实数域上是对称矩阵。在复数域上是厄米特矩阵(共轭对称)。

因为正定矩阵在定义的时候就是要在厄米特矩阵的域内(实数域上是对称矩阵)。

如果只是要求矩阵M有(x^T)Mx>0,那么任何矩阵M,只要其满足A=(M+M^T)/2,且(x^T)Ax>0,即可。例如,M=[1 -1;1 1] ,A=[1 0;0 1]。但如果M不是厄米特矩阵,一般不讨论他的正定性。

例如:

A=[1 1;-1,1]

这个矩阵满足对于任意实非零向量向量x=(x1,x2),有x^TAx>0,因此是正定的。

如果一个矩阵A是正定的,那么对称矩阵B=(A+A^T)/2也是正定的,这是判定一个实系数矩阵是否为正定矩阵的充要条件。

对于任意对称矩阵B,我们可以对其进行卡氏分解。

对于复系数矩阵,我们有B=(A+A*)/2为正定矩阵。

正定矩阵性质

(1)正定矩阵的行列式恒为正;

(2)实对称矩阵A正定当且仅当A与单位矩阵合同;

(3)若A是正定矩阵,则A的逆矩阵也是正定矩阵;

(4)两个正定矩阵的和是正定矩阵;

(5)正实数与正定矩阵的乘积是正定矩阵。

小编推荐

一键复制全文保存为WORD