数学答题要利用好快与准。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。
再次回归课本。题在书外,但理都在书中。对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化。通过看课本系统梳理高中数学知识,巩固高中数学基本概念。看课本,有三个建议,一是打乱顺序按模块阅读,二是要注意里面的小字和旁白以及后面的“阅读与思考”,三是对于基础较弱的学生,可把书后典型习题再做一遍。
利用好错题本(或者积累本)。要把自己常犯的错或易忽略的内容在高考之前彻底解决,给自己积极的心理暗示。限时强化训练,全真模拟训练。除了强化知识,还要学会非智力因素在考试中的应用,适当的懂得放弃。
答题时要有强烈的“功利心”——多得一分是一分。例如,考试时遇到不会做的选择题,若不择手段(验证法、估算法、数形结合、特例法等方法)还是做不出来,此时绝不提倡钻研精神,要暂时跳过去答后面的,回头有时间再来打这只拦路虎,切不可因为这一道5分的题,影响后面20分甚至更多会做的题因没时间做而拿不到分。
一、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
二、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。