离散数学连通分支数怎么算

文/微凉395
专题:

设R为空间X中点的连通关系,每个等价类R[x]称为空间X的一个连通分支。设Y为空间X的非空子集,Y作为X的子空间的连通分支称为X的子集Y的连通分支。拓扑空间X的所有连通分支之族是X的一个分类。换言之,X的每个连通分支都是非空集;X的不同连通分支不相交;X的所有连通分支之并为X。

对于一个无向图而言,它的一个极大连通子图即为一连通支。比如说,一个图由三部分构成,其中每一部分都是连通的,但三个部分之间互相不连通,那么每一部分即为无向图的一个连通分支。此图的连通分支数为3。

更形象些,你把教学楼附近的几棵树合起来看做是一个无向图,树叶和树枝分叉点为图的结点,树枝为图的边,每一棵树是连通的,但树与树之间没有树枝相连。因而,每棵树都可视为一个连通分支,树的个数为连通分枝数。

拓扑空间X的所有连通分支之族是X的一个分类。换言之,X的每个连通分支都是非空集;X的不同连通分支不相交;X的所有连通分支之并为X。

拓扑空间X是连通空间当且仅当X是它的唯一连通分支。C不是拓扑空间X的任意连通子集的真子集。则称C为拓扑空间X的一个连通分支(或极大连通子集),设X是多于一点的拓扑空间,若拓扑空间X的每个单点集都是X的连通分支。

小编推荐

一键复制全文保存为WORD