高中四个均值不等式 公式是什么

文/梦醒
专题:

常用的四个均值不等式包括:算术平均不等式、几何平均不等式、平方平均不等式和调和平均不等式。高中均值不等式:a²+b²≥2ab;√(ab)≤(a+b)/2;a²+b²+c²≥(a+b+c)²/3;a+b+c≥3×三次根号abc。

四个均值不等式是什么

1. 算术平均不等式:对于任意非负实数a和b,成立不等式

$\frac{a+b}{2} \geq \sqrt{ab}$。

这个不等式告诉我们,如果两个数的和除以2大于等于它们的乘积的平方根,那么它们的和除以2至少不小于它们的乘积的平方根。

2. 几何平均不等式:对于任意非负实数a和b,成立不等式

$\sqrt{ab} \geq \frac{a+b}{2}$。

这个不等式告诉我们,如果两个数的乘积的平方根大于等于它们的和除以2,那么它们的乘积的平方根至少不小于它们的和除以2。

3. 平方平均不等式:对于任意非负实数a和b,成立不等式

$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$。

这个不等式告诉我们,如果两个数的平方和除以2的平方根大于等于它们的和除以2,那么它们的平方和除以2的平方根至少不小于它们的和除以2。

4. 调和平均不等式:对于任意正实数a和b,成立不等式

$\frac{2}{\frac{1}{a} + \frac{1}{b}} \leq \frac{a+b}{2}$。

这个不等式告诉我们,如果两个数的倒数的平均值小于等于它们的和除以2的倒数,那么它们的倒数的平均值至少不大于它们的和除以2的倒数。

这四个常用的均值不等式在数学和实际问题中有广泛的应用,可以帮助我们建立或判断数值之间的关系。拓展知识:除了上述四个常用的均值不等式,还有一些其他的均值不等式,如夹逼定理、加权平均不等式等,它们在不同的数学领域和问题中也发挥着重要作用。

均值不等式的公式

1、调和平均数:Hn=n/(1/a_1+1/a_2+⋯+1/a_n )

2、几何平均数:Gn=n√(a_1 a_2…a_n )

3、算术平均数:An=(a_1+a_2+⋯+a_n)/n

4、平方平均数:Qn=√((a_1^2+a_2^2+⋯+a_n^2)/n)

5、均值定理: 如果

属于正实数那么且仅当时 等号成立。

这四种平均数满足Hn≤Gn≤An≤Qn

a1、a2、… 、an∈R +,当且仅当a1=a2= … =an时取“=”号

均值不等式的一般形式:设函数D(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);

(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))

则 [1]当注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D⑴≤D⑵

由以上简化,有一个简单结论,中学常用2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2]

均值定理的证明:因为 a 〉0 , b 〉0 所以 a+b/2 - √ab = a+b-2√ab/2 = (√a-√b)^2/2 ≥ 0

即 a+b/2≥√ab. 当且仅当√a= √b ,等号成立。

小编推荐

一键复制全文保存为WORD

猜你喜欢

高中四个均值不等式 公式是什么

24-09-27

平面的法向量怎么求 与平面什么关系

24-09-27

高中数学知识点归纳大全 必考公式汇总

24-09-24

数学提升最快的方法 有哪些快速提高成绩的方法

24-09-21

数学基础很差从哪里学起 有哪些高效提分技巧

24-09-20

数学基础差怎么补救高三 有哪些提分技巧

24-09-20

数学补课哪个机构好 什么机构推荐

24-09-20

数学考高分的小诀窍 快速提分方法有哪些

24-09-19