一元二次方程顶点坐标

文/寂寞痛
专题:

一元二次方程顶点坐标:[-b/2a,(4ac-b²)/4a]。顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数)。

顶点坐标

解析式顶点坐标对称轴
y=ax²(0,0)x=0
y=a(x-h)²(h,0)x=h
y=a(x-h)²+k(h,k)x=h
y=ax²+bx+c-b/2a,(4ac-b²)/4ax=-b/2a

一元二次方程

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。成立条件如下:

①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数;

③未知数项的最高次数是2。

小编推荐

一键复制全文保存为WORD