解一元一次不等式的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1;⑥其中当系数是负数时,不等号的方向要改变。
(1)去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。
(2)去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。
(3)移项:根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。
(4)合并同类项。
(5)将未知数的系数化为1:根据不等式基本性质2或3,特别要注意系数化为1时,系数是负数,不等号要改变方向。
(6)有些时候需要在数轴上表示不等式的解集。
不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
用式子表示:如果a>b,那么a±c>b±c
不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变。
用式子表示:如果a>b,c>0,那么ac>bc
不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变。
用式子表示:如果a>b,c<0,那么ac<bc