二项分布的期望和方差:二项分布期望np,方差np(1-p);0-1分布,期望p方差p(1-p)。
证明过程
最简单的证明方法是:X可以分解成n个相互独立的,都服从以p为参数的(0-1)分布的随机变量之和:
X=X1+X2+...+Xn,Xi~b(1,p),i=1,2,...,n.
P{Xi=0}=1-p,P(Xi=1)=p.
EXi=0*(1-p)+1*p=p,
E(Xi^2)=0^2*(1-p)+1^2*p=p,
DXi=E(Xi^2)-(EXi)^2=p-p^2=p(1-p).
EX=EX1+EX2+...+EXn=np,
DX=DX1+DX2+...+DXn=np(1-p).