双曲线的性质

文/红雄王一
专题:

双曲线的性质:1、取值区域:x≥a,x≤-a或者y≥a,y≤-a;2、对称性:关于坐标轴和原点对称。3、顶点:A(-a,0)A’(a,0)AA’叫做双曲线的实轴,长2a;B(0,-b)B’(0,b)BB’叫做双曲线的虚轴,长2b等。

双曲线的性质

1、取值区域:

x≥a,x≤-a或者y≥a,y≤-a

2、对称性:

关于坐标轴和原点对称。

3、顶点:

A(-a,0)A’(a,0)AA’叫做双曲线的实轴,长2a;B(0,-b)B’(0,b)BB’叫做双曲线的虚轴,长2b。

4、渐近线:

横轴:y=±(b/a)x竖轴:y=±(a/b)x

5、离心率:

e=c/a取值范围:(1,+∞)

6、双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率。

7、双曲线焦半径公式:

圆锥曲线上任意一点到焦点距离。过右焦点的半径r=|ex-a|;过左焦点的半径r=|ex+a|

8、等轴双曲线

双曲线的实轴与虚轴长相等,2a=2b e=√2

9、共轭双曲线

(x^2/a^2)-(y^2/b^2)=1与(y^2/b^2)-(x^2/a^2)=1叫共轭双曲线

(1)共渐近线

(2)e1+e2>=2√2

10、准线:

x=±a^2/c,或者y=±a^2/c

小编推荐

一键复制全文保存为WORD